
ytterbium

Stable	Atomic mass*	Mole
isotope		fraction
¹⁶⁸ Yb	167.933 897	0.0013
¹⁷⁰ Yb	169.934 7618	0.0304
¹⁷¹ Yb	170.936 3258	0.1428
¹⁷² Yb	171.936 3815	0.2183
¹⁷³ Yb	172.938 2108	0.1613
¹⁷⁴ Yb	173.938 8621	0.3183
176 Yb	175.942 5717	0.1276

^{*} Atomic mass given in unified atomic mass units, u.

Half-life of redioactive isotope

Less than 1 second

Important applications of stable and/or radioactive isotopes

Isotopes in industry

1) ¹⁶⁹Yb emits gamma rays and can be used to create a radiographic image of an object without the use of electricity. A capsule containing ¹⁶⁹Yb is placed on one side of the object being screened and photographic film is placed on the other, this will show any flaws in metal casting or welded joints.

Figure 1: Radiography inspection using ¹⁶⁹Yb.

2) Gamma cameras use ¹⁶⁹Yb as a radiation source. Gamma cameras are used to locate sealed radioactive sources and hot spots in historical waste. Images of the gamma ray intensity are made and then the 2D distribution is superposed on a picture or video images.

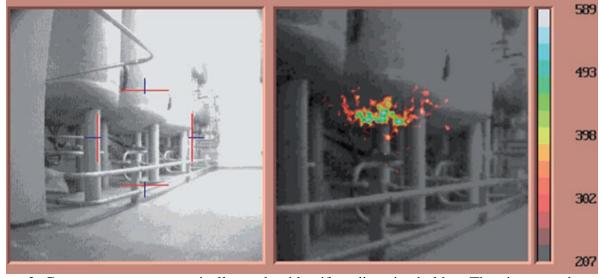


Figure 2: Gamma cameras are typically used to identify radioactive holdup. The picture to the left is of a tank and the picture to the right shows the radioactivity in the tank. (Holdup is material that does not come out of a process as product or waste.)

Isotopes in medicine

1) ¹⁶⁹Ytterbium is used for cerebrospinal fluid (CSF) studies in the brain. It can be introduced into the CSF through the lumbar or suboccipital puncture. Once in the CSF a

series of scans or scintiphotography can be done to determine the distribution of ¹⁶⁹Yb. This helps to determine swelling locations and CSF leaks in the brain that may be caused from a trauma.

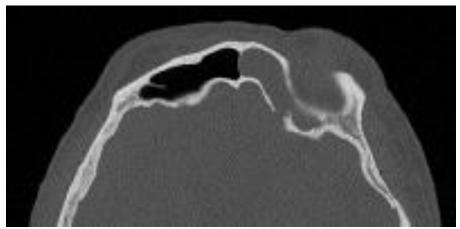


Figure 3: Axial CT of a patient with CSF leak.

- 2) Radioisotope 169 Yb is manufactured using 168 Yb.
- 3) In the treatment of prostate cancer with brachytherapy seed implants, ¹⁶⁹Yb has been suggested as an alternative to using ¹²⁵I and ¹⁰³Pd.

Isotopes in physics

1) ¹⁷¹Yb is currently being studied for use in an ytterbium optical lattice clock.

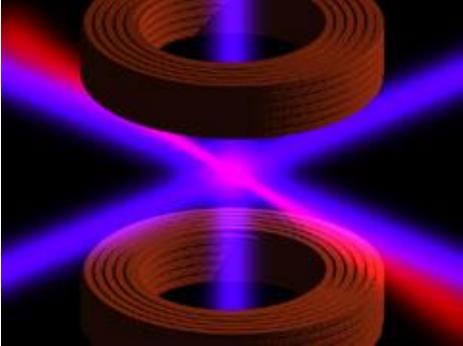


Figure 4: Inside NIST's new optical atomic clock. The red rings are magnetic coils and the red laser beam is an optical lattice. The intersecting violet lasers cool the ytterbium atoms.

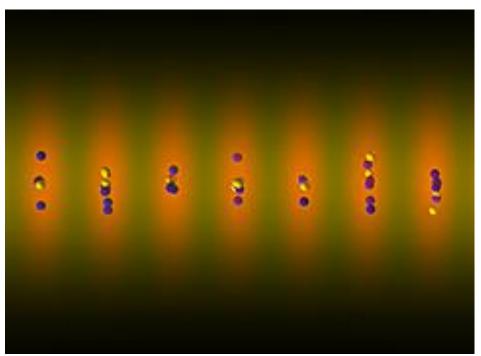


Figure 5: Ytterbium atoms are trapped in pancake shaped "wells" by a lattice of laser beams. The atoms are excited by the yellow laser causing them to oscillate between lower (blue) and higher (yellow) energy levels.